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Stability Issues in Ambient-Temperature Passive Magnetic Bearing Systems

R. F. Post
Lawrence Livermore National Laboratory

Abstract

The ambient-temperature passive magnetic bearing system developed at the
Lawrence Livermore National Laboratory achieves rotor-dynamic stability by employing
special combinations of levitating and stabilizing elements. These elements, energized by
permanent magnet material, create the magnetic and electrodynamic forces that are
required for the stable levitation of rotating systems, such as energy-storage flywheels.
Stability criteria, derived from theory, describe the bearing element parameters, i.e.,
stiffnesses and damping coefficients, that are required both to assure stable levitation
(“Earnshaw-stability”), and stability against whirl-type rotor-dynamic instabilities.

The work described in this report concerns experimental measurements and
computer simulations that address some critical aspects of this overall stability problem.
Experimentally, a test device was built to measure the damping coefficient of dampers
that employ eddy currents induced in a metallic disc. Another test device was
constructed for the purpose of measuring the displacement-dependent drag coefficient of
annular permanent magnet bearing elements.

In the theoretical developments a computer code was written for the purpose of
simulating the rotor-dynamics of our passive bearing systems. This code is capable of
investigating rotor-dynamic stability effects for both small-amplitude transient
displacements (i.¢., those within the linear regime), and for large-amplitude displacements,
where non-linear effects can become dominant. Under the latter conditions a bearing
system that is stable for small-amplitude displacements may undergo a rapidly growing
rotor-dynamic instability once a critical displacement is exceeded. A new result of the
study was to demonstrate that stiffness anisotropy of the bearing elements (which can be
designed into our bearing system) is strongly stabilizing, not only in the linear regime, but
also in the non-linear regime.

I) Introduction

To put the experimental and theoretical work to be described in context, there
follows a brief description of the Livermore passive magnetic bearing system.

The ambient-temperature passive magnetic bearing concept [1,2] developed at the
Laboratory employs electrodynamic interactions to overcome the limitations imposed by
Earnshaw's theorem [3]. This theorem, as it was later extended, asserts the impossibility
of stably levitating an object using static magnetic fields (as, for example, the fields of
permanent magnets). Our bearing systems, which are effective for stably levitating
rotating systems above a low “critical speed,” employ electrodynamic effects to evade
Earnshaw's theorem. At rest, or at speeds below the critical speed, disengaging



mechanical bearings are used to maintain stability during this transition period. Thus
there are three main component elements to our bearing system, all three of which are
required to achieve Earnshaw-stable operation at operating speeds.

The first of these three components consists of axially symmetric elements, for
example, pairs of annular rings of permanent magnet material, one stationary, and one
rotating. These elements provide the levitating forces. However, as dictated by
Earnshaw's theorem, such magnet pairs are intrinsically unstable, either for axial
displacements from equilibrium (attracting pairs), or for transverse displacements and/or
tilting motions (repelling pairs). In engineering parlance, all such bearing element pairs, if
they have positive stiffness (restoring force, increasing with displacement) along one axis,
then it follows that they must have negative stiffness (increasing destabilizing force with
displacement) along another axis.

To achieve Earnshaw-stability, a new element must be introduced, one which has
a sufficient positive stiffness along the appropriate axis to overcome the negative stiffness
of these bearing element pairs. At the same time this new element must not introduce a
degree of negative stiffness along the orthogonal axes to destabilize the system. To
achieve this result we employ stabilizing elements employing electrodynamic effects. In
electrodynamic systems, as opposed to magnetostatic systems, the relationships
between forces and stiffnesses are not constrained by the consequences of Earnshaw's
theorem.

The second one of the three major components, the stabilizer element, could be
called a “Halbach stabilizer,” in that it employs permanent-magnet bars arranged in the
special configuration called a Halbach array [4], named after its inventor, Klaus Halbach
of the Lawrence Berkeley National Laboratory. Invented by Halbach for use in particle
accelerators, Halbach arrays are ideally suited for application in our passive magnetic
bearing systems. They can be made in either cylindrical or planar form. Their property
is that they develop a strong, localized, periodic magnetic field adjacent to their front
surface, while canceling the fringing fields on the back surface. These stabilizers operate
by placing the Halbach array on the rotating assembly in close proximity to a “stator”
that consists of a close-packed array of shorted electrical circuits. When the Halbach
array assembly rotates around the stator it induces currents in the stator circuits which
create a repelling force (positive stiffness) for displacements from the centered
equilibrium position. If the array pole number (number of wavelengths of the Halbach
array around the circumference of the array) is large the field gradient near the surface of
the array is very high. As a result the resulting positive stiffness of the stabilizer element
can be large, amply sufficient to overcome the negative stiffness of the levitating magnets.
Figure 1 shows, schematically, a cylindrical version of a Halbach stabilizer.

To complete the description of those elements of the passive bearing system that
assure Earnshaw-stability, the third element is a mechanical bearing system (ball bearing,
foil bearing, etc.) which, while engaged at zero or low rotation speeds, disengages at a low
critical speed. (This same bearing could act as an emergency “touchdown” bearing during
normal operation.) The critical speed is that speed at which the Halbach stabilizers,



which clearly require rotation to function, develop a sufficient positive stiffness to
stabilize the overall system.

Over the period of time that the Livermore passive magnetic bearing work has
been carried out most of the important issues associated with the above elements have
been thoroughly addressed, both theoretically and experimentally. The issues that have
not been adequately studied are those that arise in connection with rotor-dynamic
instabilities. These instabilities originate from sources other than those addressed in
achieving Earnshaw-stability. These other issues, namely, means for the control of rotor-
dynamic instabilities, are the ones that were the subject of the studies reported here.

IT) Rotor-Dynamic Issues

Rotor-dynamic instability of a magnetically levitated rotating system can arise
from the presence of displacement-dependent drag or dissipation in the rotating system.
There are three generically different driving sources for the instability. One of these is the
bearing system itself. A second source could be aerodynamic drag forces or
electrodynamic torques associated with motor or generator action. The third potential
source is mechanical hysterisis within the rotor body itself [5].

The type of instability we are referring to is typically referred to as a “whirl-
type” instability, in that it manifests itself as a growing eccentric whirling motion of the
rotor. For the kinds or rotating systems that we are here considering, for example, fiber-
composite flywheel rotors, unstable flexural modes of the kind that might be encountered
in shaft-supported systems are typically not present within the operating speed range.
For the cases considered here all such modes would have eigenfrequencies that lie above
the highest operating speeds. The dominant unstable whirl mode therefore consists of an
exponentially growing spiraling motion of the center-of-mass of the system. For this
mode gyroscopic effects are such as to limit the excursions to pure translations, i.c.,
transverse displacements unaccompanied by tilting of the axis of rotation.

The equations of motion of the center of mass under the influence of the
transverse stiffnesses of the bearing elements and the displacement-dependent drag terms
have been given in a previous report [1]. They take the form of simultaneous differential
equations for the x and y motions of the center-of-mass. The equations are repeated here
for later use in this report.

d?x dx

Mgt-z- =-K_ x+to, y- B(—E (1)
d?y dy
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Here K, and Ky (Newtons/meter) , and o,  and o, (Newtons/meter)  are the
stiffnesses and drag coefficients in the x and y directions, respectively, and § (Newtons-



sec./m.) is the damping coefficient for the eddy-current damper. The rotating mass is denoted
by M (kg.).

In the case of isotropic stiffness and drag coefficients (K, = K, = Ko, = o,

= @), solution of the above equations yields the condition for stabilization by eddy-current
dampers:

o _ K .
B> o, - stable, Q, = Vi radians/sec. 3)

In the case of anisotropic stiffness and drag coefficients, if no eddy-current dampers
are employed, stabilization can still occur if the following condition is satisfied:
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As seen from these equations there are two means by which to avoid transverse whirl
instabilities, both of which - eddy-current dampers or anisotropic stiffness - can be employed
in our passive bearing system as needed. Eddy-current dampers have been employed before in
magnetic bearing systems, for example in the active magnetic bearings developed by Fremerey
[6], however, as far as we are aware, stabilization by anisotropic stiffness has not been
employed in any of the active bearing systems that have been developed to date. These
systems have generally relied on their sensors and electronic feedback circuits to suppress
tendencies toward whirling instability. In our case, however, we must rely on passive means
for control. Fortunately, our use of Halbach array stabilizers opens up the possibility of
employing stiffness anisotropy as an adjunct to eddy-current damping for whirl stabilization.
By varying either the turn-to-turn spacing or the loading inductances of the stator windings,
or by winding the stator on an elliptical form, anisotropy in the transverse stiffness of this
element can be introduced to help in stabilizing the system. In a later section we will present
results obtained from computer-modeling of the rotor dynamics that illustrate this
stabilization, including stabilization in the presence of non-linear terms that otherwise would
lead to a very rapidly growing instability if a critical initial displacement is exceeded.

IIT) Eddy-Current Dampers: Theory

The type of eddy-current damper that we have considered here is shown schematically
in Figure 2. As shown in the figure the damper consists of two annular permanent magnet
discs oriented in the attractive mode. These magnet discs are to be attached to and coaxial with
the rotating system. Located midway between the two discs is a metal (copper or aluminum)
sheet. When the magnet discs are rotating, and their axis of rotation is fixed in space, the
magnetic field is constant at the disc and no eddy currents are induced. However, if the axis of
rotation moves transversely the disc will be exposed to a time-varying magnetic field and eddy
currents will be generated in such a way as to oppose and damp the motion in a way similar to
viscous damping. It is important to note that the damper plate is stationary, while the
damping magnets are rotating. If the alternative arrangement, i.e., stationary magnets and



rotating disc, were to be used, the “damper” itself would become a driving source for whirl
instability.

In one of our previous reports [2 ] a derivation of the damping coefficient for such a
damper was given, with the resulting equation for the damping coefficient:

B = %tf Birdr (Newtons m!  sec.) (5)

Here B, (Tesla) is the z-component of the magnetic field on a plane midway

between the two disc magnets, t (meters) is the thickness of the conducting sheet of metal
between the magnets, and p (ohm-meters) is its resistivity. The derivation was made
under the assumption that the inequality t(b-a) << & is satisfied, where b (m.) is the
outer radius of the annular magnets, a (m.) is the inner radius, and & (m.) is the electrical
skin depth at the frequency of the motion of the conducting sheet. Satisfaction of this
criterion assures that the magnetic field will remain approximately constant within the
conducting disc during its motion, i.e., that skin effects will be small. In the
measurements to be reported the thicknesses and velocities tested were such as to span
the regime (at low velocities) where this criterion was satisfied, up to higher velocities
and/or greater thicknesess of the metal, where it was not satisfied, with a consequent
major reduction in the value of the damping coefficient. In the design of systems using
this type of eddy-current damper to control whirl instabilities it is important to take this
source of non-linearity in the damping coefficient into account in order to insure that
stability will be maintained over the operating range of operating speeds and
displacements.

Three independent means for determining the damping coefficient of eddy-
dampers of the type described here were investigated and cross-checked with each other.
In a given situation whichever one of these methods is easiest to employ can be used for
the design. Before describing the results from the three methods we note a relationship,
one that can be derived from equation 5, that can be used to perform an indirect
evaluation of the damping coefficient through a simple force measurement. We note that
the integral in equation 5 is same integral that gives the attractive force between the two
magnets as it is proportional to the integral of the Maxwell stress tensor across a plane
midway between the two magnets . That is, the force between the magnets is given by
the equation:

F= ulof Brdr (Newtons) (6)



Comparing equations 5 and 6 we see that the damping coefficient can be deduced
directly from a force measurement through the following relationship:

B :[—“p—"ﬂ P ™

The second method for determining the damping coefficient is to calculate the z-
component of the magnetic field between the discs and use this result to evaluate the
integral in equation 5. Such a calculation is also useful when evaluating the levitating force
between annular magnets in designing other elements of the passive magnetic bearing
system. The method we employed in evaluating the field was to integrate the expression
for the vector potential of a loop current to create surface currents that correspond to the
Amperian currents representing our permanent magnet material, and then to integrate this
expression to determine the z-component of the magnetic field. The equation that was
derived is given by the expression:

BZ(I',Z) =
(=)
[ B, }Zf‘ [1+(z'/a)2 -(r/a)Cos(t)] COS(t)}d' Ted]
a4 | ) r@mamacesn 0| R ®
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Here B, (Tesla) is the remanent magnetic field of the permanent-magnet material, a (m.)

is the radius of the magnet disc, and h (m.) is its thickness. The distance from the face of
the magnet to the observation point at radius r (m.) is z(m.). The above expression gives
the z-component of the magnetic field from a solid disc of magnet material. To calculate
the field from an annular magnet of outer radius a and inner radius b the above expression
is first evaluated for a disc of radius a and then for one for radius b, and the second result
is subtracted from the first, corresponding to the removal of the core from a solid disc to
produce an annular magnet.

IV) Eddy-Current Dampers: Experiment

A direct measurement of the damping coefficient was made by constructing a test
rig that consisted of two annular disc magnets mounted on the end of a pivoted lever arm.
The length of the lever arm between the pivot point and the center of the disc magnets
was 61. cm. This lever arm rested on a load-cell (located at 30.5 cm. from the pivot
point) to measure the forces arising from eddy currents induced in a rotating copper disc
positioned between the magnet discs. The copper disc was much larger in diameter than
the magnets, which were positioned near the outer edge of the disc. In this way the field
between the magnets passed through a moving conductor whose velocity was
approximately constant within the gap between the magunets, thus closely simulating the
situation that would arise in a damper using the same magnets and the same thickness of



damper plate. The lever assembly was mounted on the tool post of a lathe, while the
copper disc was attached to a mounting plate that was held in the lathe's chuck. The
velocity of the copper surface between the two magnets was then determined from the
radial position of the magnets and the rotation speed of the chuck. The latter could be
varied over a sufficient range to simulate the range of velocities that might be encountered
when the damper was incorporated into a passive bearing system.

The magnet discs were commercial NdFeB magnets with a nominal remanent field
of 1.23 Tesla. They were 0.635 cm. in thickness, with an outer diameter of 4.45 cm. and
an inner hole diameter of 1.27 cm. Several copper discs were employed, with thicknesses
of 0.8 mm., 1.6 mm., 3.2 mm., and 6.4 mm. The distance between the center of each disc
and the center line of the magnet discs was 15.25 cm.. To determine the velocity of the
copper surface between the magnet discs. this distance was multiplied by the rotation
speed of the lathe chuck in radians per second. This conversion factor (between lathe
RPM and conductor velocity in meters/sec.) is: Velocity (m/sec.) = .0157 x (rotation
speed in RPM). The rotation speeds varied between 45 RPM and 1800 RPM,
corresponding to velocities between 0.71 m/sec. and 28.2 m/sec.

Torques on the disc caused by eddy currents were measured by taking the
difference of the load-cell readings obtained when the disc was at rest and when it was
spinning at a chosen speed. The measured force in Newtons was then divided by a factor
of 2 to take into account the 2:1 lever ratio of the test rig. Dividing this number by the
velocity of the conductor between the magnets in meters/sec. yields the damping
coefficient B (Newton-sec./meter). In the data taken several different spacings between
the magnets were used, to investigate the variation of the damping coefficient with
magnetic field intensity.

The essential content of the measurements taken can be represented by two
graphs, Figure 3 and Figure 4.

In Figure 3 the damping coefficients deduced from the measurements are plotted
as a function of velocity for three different thicknesses of copper disc, with a spacing
between the magnets of 13 mm. At the lowest velocities the damping coefficient is seen
to vary linearly with thickness, in the manner predicted by Equation 5. However, as the
velocity increases only the thinnest disc has a damping coefficient that is independent of
velocity over the range covered in the experiments. The thicker discs are seen to have
damping coefficients that drop rapidly with increasing velocity, corresponding to a failure
to satisfy the criterion used in deriving the theory, namely that the skin depth is
sufficiently large compared to the geometric mean of the disc thickness and radius.

Figure 4 illustrates another deduction from the measurements. Here the disc
thickness is fixed, but the spacing between the magnets is varied. At low velocities the
expected increase of damping with increased magnetic field (because of closer spacing of
the magnets) is evident. However, at higher velocities the closer-spaced case shows a
decay with increasing velocity, indicating a failure to satisfy the skin-depth criterion. We
believe that the failure here arises from a subtler point, as follows. When the magnets are



spaced closer together the magnetic field gradient at the edges of the magnet is steepened,
corresponding to increasing the frequency spectrum of the time-varying field seen by the
moving conductor. This increased frequency results in a decrease in the skin depth, with
a consequent progressive failure to satisfy the skin-depth criterion as the velocity
increases.

The observed non-linearity of the damping coefficients as a function of velocity
would need to be taken into account in the design of a bearing system. Situations could
arise where the damping, though adequate to suppress rotor-dynamic instabilities for
small displacements from equilibrium, would be inadequate if the velocity of the
displacement was sufficiently large to lie in the non-linear regime of the damper. To put
this remark in perspective, an oscillatory displacement of 1.0 mm., if associated with a
frequency of 250 Hz, corresponds to a peak velocity of about 1.5 m/sec, a velocity
where non-linearity is beginning to be pronounced for the thickest discs that were tested.

V) Eddy Current Dampers: Correlation with Alternative Determinations

It was noted earlier that an alternative way to determine the damping coefficient of
an eddy-current damper (in its linear regime) is to measure the force between the disc
magnets and insert this value into Equation 7. In the work described here such force
measurements were performed. The results of these measurements, for two disc magnets
of the same size as those used in the eddy-current damper measurements, are summarized
in Figure 5. We may insert these results into Equation 7 in order to determine the value
of the damping parameter by a second method. For example, for a spacing of 5 mm. the
measured value of the attractive force is 70.8 Newtons. Taking the conductivity of
copper as 1.8 x 10-8 ohm-m, and considering the example of a 0.8 mm disc, then
inserting this force value into Equation 7 yields a damping coefficient 3 = 3.95, in
reasonable agreement with the value of about 3.6 as shown on Figure 4.

The third method of determining the damping coefficient is to use the force as
calculated from the vector potential expression, Equation 8, giving the z-component of the
magnetic field from a disc magnet. The results from this calculation can then be inserted
into Equation 6 to determine the force between the two discs. We evaluated these
expressions for the case of two magnets separated by a distance of 9.53 mm., finding for
the calculated force the value 44.5 Newtons. This figure compares reasonable well (i.e.,
within 7 percent) with the directly measured value of 41.3 Newtons. Thus values of the
force calculated from Equation 8 can also be inserted into Equation 7 in order to
determine the damping coefficient, in those cases where neither direct measurement nor
measurement of the force and use of Equation 7 are convenient.

In summary to this point, we have demonstrated three methods of determining the
damping constant of eddy-current dampers operating in the velocity range where skin
effects are not important. We have also, by direct measurements, investigated the non-
linear effects that arise when the assumption that the skin depth is large compared to the
geometric mean of the thickness and radius of the magnet discs is not satisfied. The data
determined by one or more of these methods can then be inserted, together with other



parameters, into Equations 1 and 2 in order to examine the rotor-dynamic stability of the
proposed system. In the next section we will discuss numerical solutions to these
equations that we have made in pursuit of this objective.

VI) Computer Simulation of Whirl Instabilities with Non-Linear Drive Terms

An important step in our program to develop practical ambient-temperature
passive magnetic bearing systems is to understand the behavior of such systems, not only
in the linear regimes that have been studied analytically, but also in the non-linear regimes
that may arise if such systems are suddenly subjected to a large-amplitude disturbance,
e.g., from seismic effects. Such cases are intractable analytically and it is necessary to
employ computer simulation in order to build a base of understanding, and also to permit
the design of robustly stable systems. We have developed such a code by programming
Equations 1 and 2, with the inclusion of non-linear terms in the displacement-dependent
drive terms (the o terms in the equations). Ryutov [7] has shown that the form these
terms must take is a power series in the displacement-squared as follows:

0= O + O (X24Y2) + Gp(x2+yH)2 + .. )]

In our program we included the first and second-order terms. Higher order terms
could be added, but it is felt that their inclusion is not likely to be needed in order to
adequately represent realistic systems. As modified, the non-linear equations of motion
that were solved numerically are given below:

d?x dx
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To solve these equations they were first put into dimensionless form by making a
transformation of variables and defining dimensionless constants as follows:
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The transformed equations are now:
dx =-(1+C)x+Ay-B dx 12
7 =-(+Ox+Ay-B (12)
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In the integration of these equations when a non-linear (amplitude-dependent)
term was included in A, this term was redefined as:

A=Ay +A; [ +y2 ] (14)

In the linear (small amplitude) limit, and for isotropic stiffnesses (C = 0), the
stability criterion for these equations becomes:

B> A, Stable (15)

In the linear limit stabilization by anistropic stiffness (C # 0) is achieved (with the
damping term, B, equal to zero) when the following condition is satisfied:

C> A, Stable (16)

In the linear limit the units of the displacements are arbitrary. However, in the
case that the non-linear (displacement dependent) driving terms in A are included, then
the units (meters, centimeters, etc.) of the displacement will be determined by the units of
the coefficients of these terms.

In investigating the behavior of the numerical solutions to Equations 12 and 13,
the stability criteria (145 and (16) were found to be satisfied to high accuracy. The new
information derived from these equations was associated with the presence of the

displacement-dependent term, A; , in Equation 14. For example, for a “unit circle”
initial displacement (i. e., x = 1.0 and % = 1.0 at T = 0) then the stability boundary
occurred when the damping term, B, was equal to the sum of A, and A; . Figure 6 is

a plot of the radial displacement of the center-of-mass, \]x2+y2 , as a function of _, for
displacements slightly larger and slightly smaller than the critical displacement. The
explosive growth of the instability when it is present is obvious from the plot. Further
investigation of the stability boundary showed that for displacements smaller than the
unit-circle displacement the boundary was defined by the sum of A,  and the product of
A,  and the square of the displacement radius. When the initial displacements were

linear, rather than circular (i.e. along the x or y axis, or at an angle), then the stability
boundary moved up somewhat, going from a radial amplitude of 1.0 to an amplitude of x
=y =1.2377 (r=1.75).

Another result of the investigations was to show the effectiveness of stiffness
anisotropy in stabilizing the system, even when non-linearity is present. Figure 7
illustrates this effect. The damping coefficient, B=0.1,and A, =A; =.05, so that

the system was stable up to a critical displacement. In the case shown an initial



displacement x =y =1.23779 was made, just larger than the critical displacement. With
C = 0 (isotropic stiffness), a rapidly growing instability is observed. However, a value of
C = .02 is sufficient to stabilize the system, as shown in the other plot.

Equations 12 and 13, when solved numerically, provide a valuable extension into
the non-linear regime of the theory of the whirl instability. They should provide a means
for checking the stability of proposed passive bearing systems, as follows: By measuring
the stiffness and drag parameters of the elements of such systems, and then plugging
these values into Equations 12 and 13 the stability boundaries of the systems could be
investigated, including predictions of the displacement amplitude limits for stable
operation. As our work evolves we intend to use this tool wherever it is applicable.

VII) Displacement-Dependent Drag of Bearing Elements

Some work was carried out in an attempt to measure the displacement-dependent
drag coefficient of annular permanent-magnet levitating magnets. Previously, an
approximate formula for this drag had been derived from simple skin-depth
considerations. According to this equation the coefficient, , should have the value:

d | B2
=== Newtons/meter (17
p L2m,

Here (m.) is the skin-depth in the magnet material, assumed small compared to the
magnet dimensions, and B (Tesla) is the strength of the magnetic field between the
magnets. As an example, consider a rotation speed of 10,000 RPM for NdFeB annular
magnets of the type used in the eddy-current damper measurements (Section IV). For a
spacing of 5 mm. the field between them is approximately 0.16 Tesla. The resistivity of
NdFeB is approximately 1.6 x 10-6 ohm-m. so that the skin depth at 10,000 RPM is
approximately 4.9 cm, i.e., thicker than the magnet, thus inconsistent with the
assumption made in the derivation that the skin depth is small compared to all of the
magnet dimensions. If one nevertheless ignores this discrepancy and calculates  from
Equation (17), the value obtained is 160 N/m. As will be seen below this value is a gross
over-estimate of the actual coefficient.

An attempt was made to measure the actual drag coefficient in a test rig that
included a 10,000 RPM electrical motor driving a lower annular magnet, above which was
a torsion-wire-suspended upper annular magnet. The two annular magnets were
separated by a thin plastic sheet to avoid torques of acrodynamic origin. The intent was
to measure the torque on the upper magnet as a function of sideways displacement of the
rotating magnet, and from this measurement to deduce the value of . Within the
sensitivity of the test rig no repeatable angular deflection of the upper magnet could be
observed, so that only an upper limit, 2 degrees at a lateral displacement of one magnet
with respect to the other of 6.4 mm., was established. From the measured torsion
constant of the suspension, about 7.0 x 105> Newton-meters/degree, an upper limit to
the drag coefficient was calculated, at about 1.0 N/m. At a speed of 10,000 RPM the



power loss corresponding to this drag force would be about 0.15 Watt. We conclude that
this particular source of displacement-dependent drag and power loss, namely that arising
from the annular attracting magnet pairs, should be negligible in our passive bearing
systems.

VIII) Summary and Conclusions

Some critical aspects of the rotor-dynamic stability of rotating systems supported
by ambient-temperature passive magnetic bearings of the Livermore type have been
studied. These include the following:

. Experimental and theoretical studies of eddy-current dampers were made that will
help in their design for use in stabilizing transverse whirl modes.

. To address the problem of determining the stability of systems for which the
relevant parameters, such as stiffnesses and displacement-dependent drag terms, have
been measured or calculated, a computer code was written to solve the equations of
motion of the center-of-mass of the system. The differential equations that were solved
included non-linear terms, thus addressing situations where maintaining stability would
depend on limiting the displacements below a critical value. Insight into the role of
dampers and/or bearing stiffness anisotropy for stabilizing the system in the presence of
non-linear effects was gained.

. An attempt was made to measure the displacement-dependent drag of two
attracting annular permanent magnets. The coefficient turned out to be too small to
permit other than an upper-limit determination using the test rig as it was designed.

This work was performed under the auspices of the Department of Energy by the University of California
Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Acknowledgments:

The author acknowledges with gratitude the help in the theoretical analysis and in
the experiments that was rendered by D. D. Ryutov, W. H. Kent, D. L. Podesta, and M.
C. Fowler.

References:

[1] R. F. Post, D.D. Ryutov, J. R. Smith, L. S. Tung, “Research on Ambient-
Temperature Passive Magnetic Bearings at the Lawrence Livermore National
Laboratory,” Proceedings of the MAG '97 Industrial Conference and Exhibition on
Magnetic Bearings, p. 168 (1997).

[2] R. F. Post, D. D. Ryutov, “Ambient-Temperature Passive Magnetic Bearings:
Theory and Design Equations,” R. F. Post, D. D. Ryutov, Proceedings of the Sixth
International Symposium on Magnetic Bearings, p. 109 (1998)



[3] S. Earnshaw, “On the Nature of the Molecular Forces which Regulate the
Constitution of the Luminiferous Ether,” Trans. of the Cambridge Phil. Soc., VII. Part I,
p- 97 (1839)

[4] K. Halbach, “Application of Permanent Magnets in Accelerators and Electron Storage
Rings,” J. App. Phys. §7, 3605 (1985)

[5] M. J. Goodwin, “Dynamics of Rotor-Bearing Systems,” p. 178, Unwin Hyman,
London (1989)

[6] J. K. Fremerey, “Radial Shear Force Permanent-Magnet Bearing System with Zero-
Power Axial Control and Passive Radial Damping,” in Magnetic Bearings, Ed.
G.Schweitzer, p. 25, Springer-Verlag (1988)

[7] D. D. Ryutov, Private Communication.

Figures:

Litz wire conductor Halbach array magnet

Fig. 1  Schematic drawing of Halbach stabilizer
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Fig. 2 Schematic drawing of eddy-current damper

Damping Coefficient as a Function of Velocity
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Fig. 3 Measured damping coefficient as a function of
velocity for various conductor thicknesses



Damping Coefficients for 0.8 mm. Cu plate
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Fig. 4 Measured damping coefficient for an 0.8 mm.
copper conductor as a function of magnet spacing
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Fig. 5 Measured attractive force between annular
magnets as a function of magnet spacing
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Fig. 6a Plot of the radial displacement of the center-of-
mass as a function of t for an initial circular

displacement of 1.0001 units, showing onset of rapidly
growing (non-linear) instability.

o0 150 200

Fig. 6b Plot of the radial displacement for the same
conditions as in Figure 6a, except that the initial
displacement was reduced to 0.9999 units so that system
remains stable (amplitude decreases with time).
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Fig. 7 Left side: Unstably growing displacement with C = 0
(isotropic stiffness) Right side: Same parameters as other
plot except C = .02 (small amount of stiffness anisotropy).






